Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(8): e29500, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38660254

RESUMEN

The emergence of antimicrobial resistance among biofilm forming pathogens aimed to search for the efficient and novel alternative strategies. Metallic nanoparticles have drawn a considerable attention because of their significant applications in various fields. Numerous methods are developed for the generation of these nanoparticles however, mycogenic (fungal-mediated) synthesis is attractive due to high yields, easier handling, eco-friendly and being energy efficient when compared with conventional physico-chemical methods. Moreover, mycogenic synthesis provides fungal derived biomolecules that coat the nanoparticles thus improving their stability. The process of mycogenic synthesis can be extracellular or intracellular depending on the fungal genera used and various factors such as temperature, pH, biomass concentration and cultivation time may influence the synthesis process. This review focuses on the synthesis of metallic nanoparticles by using fungal mycelium, mechanism of synthesis, factors affecting the mycosynthesis and also describes their potential applications as antioxidants and antibiofilm agents. Moreover, the utilization of mycogenic nanoparticles as quorum quenching agent in hampering the bacterial cell-cell communication (quorum sensing) has also been discussed.

2.
Environ Monit Assess ; 196(5): 412, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565815

RESUMEN

Cadmium (Cd) is a highly toxic metal that frequently contaminates our environment. In this study, the bioflocculant-producing, cadmium-resistant Escherichia fergusonii ZSF-15 was characterized from Paharang drain, Bawa Chak, Faisalabad, Pakistan. The Cd-resistant E. fergusonii was used to determine the bioflocculant production using yeast-peptone-glycerol medium (pH 6.5) supplemented with 50 mg L-1 of Cd. The culture was incubated for 3 days at 37 °C in a rotary shaker at 120 rpm. The fermentation broth was centrifuged at 4000 g for 10 min after the incubation period. The maximum flocculating activity by isolate ZSF-15 was found to be 71.4% after 48 h of incubation. According to the Fourier transform infrared spectroscopy analysis, the bioflocculant produced by strain ZSF-15 was comprised of typical polysaccharide and protein, i.e. hydroxyl, carboxyl, and amino groups. The strain ZSF-15 exhibited bioflocculant activity at range of pH (6-8) and temperature (35-50℃). Maximum flocculation activity (i.e. 71%) was observed at 47℃, whereas 63% flocculation production was observed at pH 8. In the present study, antioxidant enzyme profile of ZSF-15 was also evaluated under cadmium stress. A significant increase in antioxidant enzymes including superoxide dismutase (118%) and ascorbate peroxidase (28%) was observed, whereas contents of catalase (86%), glutathione transferase (13%), and peroxidase (8%) were decreased as compared to control.


Asunto(s)
Antioxidantes , Cadmio , Escherichia , Cadmio/toxicidad , Concentración de Iones de Hidrógeno , Monitoreo del Ambiente , Floculación
3.
J Biomol Struct Dyn ; : 1-18, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502688

RESUMEN

Bell's palsy (BP) can result in facial paralysis. Inflammation or injury to the cranial nerves that regulate the facial muscles is primarily responsible for that disease. Commiphora wightii remains recognized as a cure for a few human ailments. This study focused on therapeutic phenomena of C. wightii for the treatment of Bell's palsy, utilizing the network drug discovery and molecular docking techniques. Active biological constituents of C. wightii were retrieved from literature and independent databases. Potential therapeutic targets (431) of 13 bioactive phytochemicals were fetched via SwissTargetPrediction tool. Putative intersecting targets (855) of Bell's palsy were computed through the DisGeNET and GeneCards datasets. Subsequently, by the analysis of potential shared targets (87) of C. wightii and Bell's palsy, a Venn diagram was drawn. DAVID database was used to evaluate gene functional annotations and enriched pathways that are involved in Bell's palsy. STRING database was used for generating the protein-protein relationship complex. Visual presentations of the interactions of potential targets to active chemical constituents were done by the Cytoscape. Whereas, the conformational research sorted out 10 key targets through the protein-protein interactions network. Moreover, the capacity of therapeutic ingredients to interact with a target inhibiting Bell's palsy was confirmed by molecular docking, which might ratify the findings of network pharmacology. In the molecular complex of AKT1-cholesterol, a 100-ns simulation unveiled a graceful stability, with a minimal 0.167 Å ligand shift and resilient hydrogen bonds (ASN54 and SER205). The final 20 ns showcased a P1 motif pirouette, gracefully forming aromatic bonds with H165 and W186, underscoring the complex's dynamic finesse. This study evaluated compound-target interactions and their impact on disease-related genes. It revealed that five genes (AKT1, TNF, MAPK3, EGFR and SRC) of C. wightii might be useful therapeutic targets for the treatment of Bell's palsy, as well as helping in lowering down the blood pressure.Communicated by Ramaswamy H. Sarma.

4.
Sci Prog ; 106(4): 368504231221672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38131108

RESUMEN

Phytonanotechnology plays a crucial part in the production of good quality and high-yield food. It can also alter the plant's production systems, hence permitting the efficient, controlled and stable release of agrochemicals such as fertilizers and pesticides. An advanced understanding of nanomaterials interaction with plant responses like localization and uptake, etc. could transfigure the production of crops with high disease resistance and efficient nutrients utilization. In agriculture, the use of nanomaterials has gained acceptance due to their wide-range applications. However, their toxicity and bioavailability are the major hurdles for their massive employment. Undoubtedly, nanoparticles positively influence seeds germination, growth and development, stress management and post-harvest handling of vegetables and fruits. These nanoparticles may also cause toxicity in plants through oxidative stress by generation of excessive reactive oxygen species thus affecting the cellular biomolecules and targeting different channels. Nanoparticles have shown to exert various effects on plants that are mainly affected by various attributes such as physicochemical features of nanomaterials, coating materials for nanoparticles, type of plant, growth stages and growth medium for plants. This article discusses the interaction, accretion and toxicity of nanomaterials in plants. The factors inducing nanotoxicity and the mechanisms followed by nanomaterials causing toxicity are also instructed. At the end, detoxification mechanism of plant is also presented.


Asunto(s)
Nanopartículas , Nanoestructuras , Plaguicidas , Nanoestructuras/toxicidad , Agricultura , Plaguicidas/toxicidad , Nanopartículas/toxicidad , Nanopartículas/química , Plantas
5.
Front Microbiol ; 14: 1188743, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323910

RESUMEN

The aim of this study was to provide a comparative analysis of chitosan (CH), copper oxide (CuO), and chitosan-based copper oxide (CH-CuO) nanoparticles for their application in the healthcare sector. The nanoparticles were synthesized by a green approach using the extract of Trianthema portulacastrum. The synthesized nanoparticles were characterized using different techniques, such as the synthesis of the particles, which was confirmed by UV-visible spectrometry that showed absorbance at 300 nm, 255 nm, and 275 nm for the CH, CuO, and CH-CuO nanoparticles, respectively. The spherical morphology of the nanoparticles and the presence of active functional groups was validated by SEM, TEM, and FTIR analysis. The crystalline nature of the particles was verified by XRD spectrum, and the average crystallite sizes of 33.54 nm, 20.13 nm, and 24.14 nm were obtained, respectively. The characterized nanoparticles were evaluated for their in vitro antibacterial and antibiofilm potential against Acinetobacter baumannii isolates, where potent activities were exhibited by the nanoparticles. The bioassay for antioxidant activity also confirmed DPPH scavenging activity for all the nanoparticles. This study also evaluated anticancer activities of the CH, CuO, and CH-CuO nanoparticles against HepG2 cell lines, where maximum inhibitions of 54, 75, and 84% were recorded, respectively. The anticancer activity was also confirmed by phase contrast microscopy, where the treated cells exhibited deformed morphologies. This study demonstrates the potential of the CH-CuO nanoparticle as an effective antibacterial agent, having with its antibiofilm activity, and in cancer treatment.

6.
J Biosci ; 482023.
Artículo en Inglés | MEDLINE | ID: mdl-37021675

RESUMEN

Plastics are indispensable and typically derived from non-renewable sources. The extensive production and indiscriminate use of synthetic plastics pose a serious threat to the environment and lead to problems due to their non-biodegradability. Various forms of plastics that are used in daily life should be limited and replaced by biodegradable materials. To deal with the challenges of sustainability or environmental issues that occur due to the production and disposal of synthetic plastics, biodegradable and environment-friendly plastics are crucial. Utilizing renewable sources such as keratin derived from chicken feathers and chitosan from shrimp cell wastes as an alternative to obtain safe bio-based polymers has gained much attention because of rising environmental issues. Approximately, 2-5 billion tons of waste are produced by the poultry and marine industries each year, adversely impacting the environment. These polymers are more acceptable and ecofriendly compared with conventional plastics due to their biostability, biodegradability, and excellent mechanical properties. The replacement of synthetic plastic packaging with biodegradable polymers from animal by-products significantly reduces the volume of waste generated. This review highlights important aspects such as the classification of bioplastics, properties and use of waste biomass for bioplastics production, their structure, mechanical properties, and demand in industrial sectors such as agriculture, biomedicine, and food packaging.


Asunto(s)
Plásticos , Aves de Corral , Animales , Biomasa , Plásticos/química , Polímeros , Biopolímeros
7.
PeerJ ; 11: e14754, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778156

RESUMEN

Fusarium cotton wilt is a devastating disease of the cotton crop throughout the world, caused by Fusarium oxysporum f.sp. vasinfectum (FOV). Chemical control has many side effects, so, biological controls have been widely used for the management of Fusarium wilt. This study aimed to investigate the possible use of an actinomycetes Saccharothrix algeriensis (SA) NRRL B-24137 to control FOV. To access in-vitro anti-Fusarium ability of SA NRRL B-24137, dual culture assay, spore germination and seed germination tests were carried out. Following in-vitro investigations, several pot tests in a greenhouse environment were used to evaluate the biological control potential of SA NRRL B-24137 against FOV. Dual culture assay and spore germination revealed that SA NRRL B-24137 showed significant anti-Fusarium activity.During spore germination 87.77% inhibition of spore germination were observed. In pot experiments, SA NRRL B-24137 primed cotton seeds resulted in a 74.0% reduction in disease incidence. In soil there was a significant reduction in FOV spores in the presence of SA NRRL B-24137. Positive correlation was also observed on different concentrations of SA NRRL B-24137 towards FOV reduction. The results of this study showed that SA NRRL B-24137 has the potential to be employed as a biocontrol agent against Fusarium cotton wilt, improving cotton growth characteristics and yield.


Asunto(s)
Fusarium , Aceite de Semillas de Algodón/farmacología
8.
PeerJ ; 10: e14358, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405015

RESUMEN

Background: Azo dyes are recalcitrant organic pollutants present in textile industry effluents. Conventional treatment methods to remove them come with a range of disadvantages. Nanoparticles and their nanocomposites offer more efficient, less expensive and easy to handle wastewater treatment alternative. Methods: In this study, nanoparticles of nickel oxide (NiO-NPs), copper oxide (CuO-NPs) and their nanocomposite (NiO/CuO-NC) were synthesized using co-precipitation method. The functional groups present on the surface of synthesized nanomaterials were verified using Fourier-transform infrared spectroscopy (FTIR). Surface morphology was assessed using scanning electron microscopy (SEM) whereas purity, shape and size of the crystallite were determined using X-ray diffraction (XRD) technique. The potential of these nanomaterials to degrade three dyes i.e., Reactive Red-2 (RR-2), Reactive Black-5 (RB-5) and Orange II sodium salt (OII) azo dyes, was determined in an aqueous medium under visible light (photocatalysis). The photodegradation effectiveness of all nanomaterials was evaluated under different factors like nanomaterial dose (0.02-0.1 g 10 mL-1), concentration of dyes (20-100 mg L-1), and irradiation time (60-120 min). They were also assessed for their potential to adsorb RR-2 and OII dyes. Results: Results revealed that at optimum concentration (60 mgL-1) of RR-2, RB-5, and OII dyes, NiO-NPs degraded 90, 82 and 83%, CuO-NPs degraded 49, 34, and 44%, whereas the nanocomposite NiO/CuO-NC degraded 92, 93, and 96% of the said dyes respectively. The nanomaterials were categorized as the efficient degraders of the dyes in the order: NiO/CuO-NC > NiO-NPs > CuO-NPs. The highest degradation potential shown by the nanocomposite was attributed to its large surface area, small particles size, and quick reactions which were proved by advance analytical techniques. The equilibrium and kinetic adsorption of RR-2 and OII on NiO-NPs, CuO-NPs, and NiO/CuO-NC were well explained with Langmuir and Pseudo second order model, respectively (R2 ≥ 0.96). The maximum RR-2 adsorption (103 mg/g) was obtained with NiO/CuO-NC. It is concluded that nanocomposites are more efficient and promising for the dyes degradation from industrial wastewater as compared with dyes adsorption onto individual NPs. Thus, the nanocomposite NiO/CuO-NC can be an excellent candidate for photodegradation as well as the adsorption of the dyes in aqueous media.


Asunto(s)
Nanocompuestos , Nanopartículas , Cobre/química , Adsorción , Cinética , Agua , Nanopartículas/química , Nanocompuestos/química , Compuestos Azo/química , Colorantes
9.
Molecules ; 27(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234800

RESUMEN

Coronopus didymus (Brassicaceae) commonly known as lesser swine cress has been reported to be used for its pharmacological activities. This study aimed to evaluate the medicinal potential of C. didymus extracts against cancer, diabetes, infectious bacteria and oxidative stress and the identification of bioactive compounds present in these extracts. The effects of using different solvents for the extraction of C. didymus on the contents of major polyphenols and biological activities were investigated. Plant sample was shade dried, ground to a fine powder, and then soaked in pure acetone, ethanol and methanol. The highest contents of major polyphenols were found in methanol-based extract, i.e., chlorogenic acid, HB acid, kaempferol, ferulic acid, quercetin and benzoic acid with 305.02, 12.42, 11.5, 23.33, 975.7 and 428 mg/g of dry weight, respectively, followed by ethanol- and acetone-based extracts. The methanol-based extract also resulted in the highest antioxidant activities (56.76%), whereas the highest antiproliferative (76.36) and alpha glucosidase inhabitation (96.65) were demonstrated in ethanol-based extracts. No antibacterial property of C. didymus was observed against all the tested strains of bacteria. Further studies should be focused on the identification of specific bioactive compounds responsible for pharmacological activities.


Asunto(s)
Brassicaceae , Lepidium , Acetona , Animales , Antioxidantes/farmacología , Ácido Benzoico , Ácido Clorogénico , Etanol , Hipoglucemiantes/farmacología , Quempferoles , Metanol , Extractos Vegetales/farmacología , Polifenoles/farmacología , Polvos , Quercetina , Solventes , Porcinos , alfa-Glucosidasas
10.
Drug Dev Ind Pharm ; 48(9): 502-509, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36191015

RESUMEN

The worldwide increase of multi-drug resistance has directed the researchers to focus on ecofriendly ways of nanoparticles synthesis with effective antivirulence properties. Here, we report the antibiofilm and quorum quenching (QQ) potential of zirconium oxide nanoparticles (ZrO2 NPs) synthesized from aqueous ginger extract against multi-drug resistant (MDR) Acinetobacter baumannii. The results indicated that ZrO2 NPs were of tetragonal shape with average diameter of 16 nm. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for A. baumannii were 15.6 and 62.5 µg/ml, respectively, as revealed by broth microdilution assay. Exposure of bacterial cells to ZrO2 NPs resulted in reactive oxygen species (ROS) generation which in turn led to cellular membrane disruption as observed by an increase in leakage of cellular contents, such as proteins, sugars, and DNA. The antibiofilm activity was evaluated by microtiter plate assay and the results revealed that the percentage inhibition of biofilm was found to be 14.3-80.6%. ZrO2 NPs also obstructed the chemical composition of biofilms matrix by reducing the proteins and carbohydrate contents. Molecular docking studies of ZrO2 NPs with four proteins (2NAZ, 4HKG, 5D6H, and 5HM6) involved in biofilm formation of A. baumannii revealed the interaction of zirconium with target proteins. These findings suggested the in vitro efficacy of phytosynthesized ZrO2 NPs as antibiofilm and QQ agents that can be exploited in the development of alternative therapeutic options against MDR A. baumannii.


Asunto(s)
Acinetobacter baumannii , Nanopartículas del Metal , Nanopartículas , Percepción de Quorum , Circonio/farmacología , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Biopelículas , Nanopartículas del Metal/química
11.
Infect Drug Resist ; 15: 5795-5811, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213765

RESUMEN

Background: The World Health Organization (WHO) has declared the multi-drug resistant (MDR) Klebsiella pneumoniae as one of the critical bacterial pathogens. The dearth of new antibiotics and inadequate therapeutic options necessitate finding alternative options. Bacteriophages are known as enemies of bacteria and are well-recognized to fight MDR pathogens. Methods: A total of 150 samples were collected from different clinical specimens through a convenient sampling technique. Isolation, identification, and antibiotic susceptibility testing (AST) of K. pneumoniae were done by standard and validated microbiological procedures. Molecular identification of virulence factors and antibiotic resistance genes (ARGs) was carried out through polymerase chain reaction (PCR) by using specific primers. For bacteriophage isolation, hospital sewage samples were processed for phage enrichment, purification, and further characterization ie, transmission electron microscopy (TEM) and stability testing, etc. followed by evaluation of the lytic potential of the phage. Results: Overall, a total of 41% of isolates of K. pneumoniae were observed as hypervirulent K. pneumoniae (hvKp). Among hvKp, a total of 12 (42%) were detected as MDR hvKp. A total of 37% of all MDR isolates were found resistant to colistin, and 66% of the colistin resistance isolates were recorded as mcr-1 positive. Isolated phage KpnM had shown lytic activity against 53 (79%) K. pneumoniae isolates. Remarkably, all 8 mcr-1 harboring MDR hvKp and non-hvKp isolates were susceptible to KpnM phage. Conclusion: Significant distribution of mcr-1 harboring hypervirulent Klebsiella pneumoniae was observed in clinical specimens, which is worrisome for the health system of the country. Characterized phage KpnM exhibited encouraging results and showed the lytic activity against the mcr-1 harboring hvKp isolates, which may be used as a prospective alternative control strategy to fight this ominous bacterium.

12.
Artículo en Inglés | MEDLINE | ID: mdl-35463094

RESUMEN

Treatment of diabetic wounds has always been a challenge for primary and acute health care. Eucalyptus alba has been reported to be used for the treatment of wounds and oxidative stress. Effects of using different temperatures and solvents for the extraction of Eucalyptus alba leaves were investigated in terms of diabetic wound healing activity. Leaves of E. alba were dried at 10°C, 30°C, 50°C, and 100°C, and dissolved in ethanol, methanol, and acetone to obtain a total of 12 extracts. All the extracts have remarkable antidiabetic, antioxidant, and cell proliferation activities. Among the tested extracts, highest activities were observed with leaves dried at 10°C and 30°C, whereas drying at 100°C resulted in the lowest activities. Ethanol-based extracts exhibited significantly increased cell proliferation compared with methanol- and acetone-based extract. The present study suggests that leaves of E. alba should be dried at temperature not more than 30°C and extracted in ethanol for optimum results. However, further studies should focus on the identification of specific bioactive compounds in E. alba leaves.

13.
PLoS One ; 17(1): e0259190, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34986148

RESUMEN

Emergence of multidrug resistant pathogens is increasing globally at an alarming rate with a need to discover novel and effective methods to cope infections due to these pathogens. Green nanoparticles have gained attention to be used as efficient therapeutic agents because of their safety and reliability. In the present study, we prepared zinc oxide nanoparticles (ZnO NPs) from aqueous leaf extract of Acacia arabica. The nanoparticles produced were characterized through UV-Visible spectroscopy, scanning electron microscopy, and X-ray diffraction. In vitro antibacterial susceptibility testing against foodborne pathogens was done by agar well diffusion, growth kinetics and broth microdilution assays. Effect of ZnO NPs on biofilm formation (both qualitatively and quantitatively) and exopolysaccharide (EPS) production was also determined. Antioxidant potential of green synthesized nanoparticles was detected by DPPH radical scavenging assay. The cytotoxicity studies of nanoparticles were also performed against HeLa cell lines. The results revealed that diameter of zones of inhibition against foodborne pathogens was found to be 16-30 nm, whereas the values of MIC and MBC ranged between 31.25-62.5 µg/ml. Growth kinetics revealed nanoparticles bactericidal potential after 3 hours incubation at 2 × MIC for E. coli while for S. aureus and S. enterica reached after 2 hours of incubation at 2 × MIC, 4 × MIC, and 8 × MIC. 32.5-71.0% inhibition was observed for biofilm formation. Almost 50.6-65.1% (wet weight) and 44.6-57.8% (dry weight) of EPS production was decreased after treatment with sub-inhibitory concentrations of nanoparticles. Radical scavenging potential of nanoparticles increased in a dose dependent manner and value ranged from 19.25 to 73.15%. Whereas cytotoxicity studies revealed non-toxic nature of nanoparticles at the concentrations tested. The present study suggests that green synthesized ZnO NPs can substitute chemical drugs against antibiotic resistant foodborne pathogens.


Asunto(s)
Acacia/metabolismo , Enfermedades Transmitidas por los Alimentos/prevención & control , Nanopartículas del Metal/química , Óxido de Zinc/química , Antibacterianos/farmacología , Antioxidantes/farmacología , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Enfermedades Transmitidas por los Alimentos/microbiología , Tecnología Química Verde/métodos , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Microscopía Electrónica de Rastreo/métodos , Extractos Vegetales/farmacología , Hojas de la Planta/metabolismo , Reproducibilidad de los Resultados , Espectrometría por Rayos X/métodos , Staphylococcus aureus/efectos de los fármacos , Difracción de Rayos X/métodos , Zinc/química , Zinc/metabolismo , Óxido de Zinc/metabolismo
14.
Chem Biol Technol Agric ; 9(1): 58, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37520585

RESUMEN

Sustainable food security is a major challenge in today's world, particularly in developing countries. Among many factors, environmental stressors, i.e., drought, salinity and heavy metals are major impediments in achieving sustainable food security. This calls for finding environment-friendly and cheap solutions to address these stressors. Plant growth-promoting rhizobacteria (PGPR) have long been established as an environment-friendly means to enhance agricultural productivity in normal and stressed soils and are being applied at field scale. Similarly, pyrolyzing agro-wastes into biochar with the aim to amend soils is being proposed as a cheap additive for enhancement of soil quality and crop productivity. Many pot and some field-scale experiments have confirmed the potential of biochar for sustainable increase in agricultural productivity. Recently, many studies have combined the PGPR and biochar for improving soil quality and agricultural productivity, under normal and stressed conditions, with the assumption that both of these additives complement each other. Most of these studies have reported a significant increase in agricultural productivity in co-applied treatments than sole application of PGPR or biochar. This review presents synthesis of these studies in addition to providing insights into the mechanistic basis of the interaction of the PGPR and biochar. Moreover, this review highlights the future perspectives of the research in order to realize the potential of co-application of the PGPR and biochar at field scale.

15.
Plant Physiol Biochem ; 170: 110-122, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864561

RESUMEN

Potassium (K+) is an important macro-nutrient for plants, which comprises almost 10% of plant's dry mass. It plays a crucial role in the growth of plants as well as other important processes related to metabolism and stress tolerance. Plants have a complex and well-organized potassium distribution system (channels and transporters). Cotton is the most important economic crop, which is the primary source of natural fiber. Soil deficiency in K+ can negatively affect yield and fiber quality of cotton. However, potassium transport system in cotton is poorly studied. Current study identified 43 Potassium Transport System (PTS) genes in Gossypium raimondii genome. Based on conserved domains, transmembrane domains, and motif structures, these genes were classified as K+ transporters (2 HKTs, 7 KEAs, and 16 KUP/HAK/KTs) and K+ channels (11 Shakers and 7 TPKs/KCO). The phylogenetic comparison of GrPTS genes from Arabidopsis thaliana, Glycine max, Oryza sativa, Medicago truncatula and Cicer arietinum revealed variations in PTS gene conservation. Evolutionary analysis predicted that most GrPTS genes were segmentally duplicated. Gene structure analysis showed that the intron/exon organization of these genes was conserved in specific-family. Chromosomal localization demonstrated a random distribution of PTS genes across all the thirteen chromosomes except chromosome six. Many stress responsive cis-regulatory elements were predicted in promoter regions of GrPTS genes. The RNA-seq data analysis followed by qRT-PCR validation demonstrated that PTS genes potentially work in groups against environmental factors. Moreover, a transporter gene (GrHAK/KUP/KT8) and two channel genes (GrAKT2.1 and GrAKT1.1) are important candidate genes for plant stress response. These results provide useful information for further functional characterization of PTS genes with the breeding aim of stress-resistant cultivars.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Genoma de Planta , Gossypium/genética , Gossypium/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potasio/metabolismo , Estrés Fisiológico/genética
16.
PLoS One ; 16(12): e0261111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34910751

RESUMEN

Stenotrophomonas maltophilia is a multidrug resistant pathogen associated with high mortality and morbidity in patients having compromised immunity. The efflux systems of S. maltophilia include SmeABC and SmeDEF proteins, which assist in acquisition of multiple-drug-resistance. In this study, proteome based mapping was utilized to find out the potential drug targets for S. maltophilia strain k279a. Various tools of computational biology were applied to remove the human-specific homologous and pathogen-specific paralogous sequences from the bacterial proteome. The CD-HIT analysis selected 4315 proteins from total proteome count of 4365 proteins. Geptop identified 407 essential proteins, while the BlastP revealed approximately 85 non-homologous proteins in the human genome. Moreover, metabolic pathway and subcellular location analysis were performed for essential bacterial genes, to describe their role in various cellular processes. Only two essential proteins (Acyl-[acyl-carrier-protein]-UDP-N acetyl glucosamine O-acyltransferase and D-alanine-D-alanine ligase) as candidate for potent targets were found in proteome of the pathogen, in order to design new drugs. An online tool, Swiss model was employed to model the 3D structures of both target proteins. A library of 5000 phytochemicals was docked against those proteins through the molecular operating environment (MOE). That resulted in to eight inhibitors for both proteins i.e. enterodiol, aloin, ononin and rhinacanthinF for the Acyl-[acyl-carrier-protein]-UDP-N acetyl glucosamine O-acyltransferase, and rhazin, alkannin beta, aloesin and ancistrocladine for the D-alanine-D-alanine ligase. Finally the ADMET was done through ADMETsar. This study supported the development of natural as well as cost-effective drugs against S. maltophilia. These inhibitors displayed the effective binding interactions and safe drug profiles. However, further in vivo and in vitro validation experiment might be performed to check their drug effectiveness, biocompatibility and their role as effective inhibitors.


Asunto(s)
Antibacterianos/farmacología , Sistemas de Liberación de Medicamentos , Simulación del Acoplamiento Molecular , Stenotrophomonas maltophilia/efectos de los fármacos , Técnicas de Hibridación Sustractiva , Proteínas Bacterianas/análisis , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Modelos Moleculares , Conformación Proteica , Proteoma
17.
Plants (Basel) ; 10(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834601

RESUMEN

Potassium is the most important and abundant inorganic cation in plants and it can comprise up to 10% of a plant's dry weight. Plants possess complex systems of transporters and channels for the transport of K+ from soil to numerous parts of plants. Cajanus cajan is cultivated in different regions of the world as an economical source of carbohydrates, fiber, proteins, and fodder for animals. In the current study, 39 K+ transport genes were identified in C. cajan, including 25 K+ transporters (17 carrier-like K+ transporters (KUP/HAK/KTs), 2 high-affinity potassium transporters (HKTs), and 6 K+ efflux transporters (KEAs) and 14 K+ channels (9 shakers and 5 tandem-pore K+ channels (TPKs). Chromosomal mapping indicated that these genes were randomly distributed among 10 chromosomes. A comparative phylogenetic analysis including protein sequences from Glycine max, Arabidopsis thaliana, Oryza sativa, Medicago truncatula Cicer arietinum, and C. cajan suggested vital conservation of K+ transport genes. Gene structure analysis showed that the intron/exon organization of K+ transporter and channel genes is highly conserved in a family-specific manner. In the promoter region, many cis-regulatory elements were identified related to abiotic stress, suggesting their role in abiotic stress response. Abiotic stresses (salt, heat, and drought) adversely affect chlorophyll, carotenoids contents, and total soluble proteins. Furthermore, the activities of catalase, superoxide, and peroxidase were altered in C. cajan leaves under applied stresses. Expression analysis (RNA-seq data and quantitative real-time PCR) revealed that several K+ transport genes were expressed in abiotic stress-responsive manners. The present study provides an in-depth understanding of K+ transport system genes in C. cajan and serves as a basis for further characterization of these genes.

18.
Arch Microbiol ; 203(9): 5417-5423, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34402947

RESUMEN

Plastics are usually made up of low-density polyethylene (LDPE) that serve as the environmental nuisance. The recalcitrant nature of plastics is a huge concern, whereas the increasing demand has made it difficult to handle the plastic waste that eventually leads to plastic pollution. In recent years, due to increasing demand and high pressure for its safe disposal, plastic biodegradation has gained a lot of attention. In the current study, four bacterial strains were isolated from the solid-waste dumpsites of Faisalabad, Pakistan, using enrichment culture technique. The isolated bacterial strains were capable of growing on media having polystyrene as the sole carbon source. Based on 16S rRNA gene sequencing and phylogenetic analysis of the isolated strains Serratia sp., Stenotrophomonas sp. and Pseudomonas sp. were identified as the potential strains for the biodegradation of LDPE. Serratia sp. resulted in 40% weight loss of the LDPE plastic pieces after 150 days of treatment. Stenotrophomonas sp. and Pseudomonas species resulted in 32 and 21% weight loss of the treated piece of plastics (LDPE), respectively. Polyethylene pieces were characterized by Fourier-transform infrared spectroscopy (FTIR) analysis before and after biodegradation. The FTIR spectra indicated that the isolated bacterial strains have a good potential to degrade LDPE. Future studies are required to investigate the bacterial genetic makeup, mechanisms of LDPE biodegradation and the factors that can enhance the biodegradable characteristics of these indigenously isolated bacterial strains.


Asunto(s)
Bacterias , Polietileno , Bacterias/genética , Biodegradación Ambiental , Filogenia , ARN Ribosómico 16S/genética
19.
Dose Response ; 19(3): 15593258211036791, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421440

RESUMEN

Background: Zinc is an essential micronutrient required for optimum plant growth. Zinc-solubilizing bacteria convert applied inorganic zinc to available forms that could be used by plants. Research design: In present study, experiments were conducted to isolate, characterize, and evaluate Zn solubilization potential of different bacteria. Results: Among 10 isolated strains, Pseudomonas protegens (RY2, MF351762) was found to be the most promising strain having zinc-solubilizing potential on 4 different insoluble zinc sources. In quantitative assay, Zn solubilization by RY2 was significantly higher than other strains at different incubation time. P. protegens RY2 was selected (based on zinc solubilizing and plant growth promoting activities like P solubilization and ACC deaminase) for plant experiments. Meanwhile, available Zn release rate in soil was determined at day 10 of incubation. Chickpea seeds were inoculated with RY2 strain and ZnO is used as zinc source. Growth parameters and quantifying zinc content of shoot and root using atomic absorption spectrophotometer were determined. Enhanced shoot and root dry weights and lengths were observed in chickpea plants compared to control. Maximum increase of 44%, 67%, and 75% in T2 (Soil + RY2), T5 (Soil + ZnO + RY2), and T7 (Soil + manure + ZnO + RY2), respectively, was found in shoot length compared to control (T1). Conclusion: The study indicated that zinc-solubilizing RY2 strain possesses potential for enhanced Zn in soil so it would allow reduced inorganic Zn application.

20.
Dose Response ; 18(3): 1559325820958911, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973419

RESUMEN

Nano-fertilizer(s), an emerging field of agriculture, is alternate option for enhancement of plant growth replacing the synthetic fertilizers. Zinc oxide nanoparticles (ZnO NPs) can be used as the zinc source for plants. The present investigation was carried out to assess the role of ZnO NPs in growth promotion of maize plants. Biosynthesized ZnO NPs (using Bacillus sp) were characterized using Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD) and Zeta potential. Different concentrations of ZnO NPs (2, 4, 8, 16 mg/L) were explored in pot culture experiment. Size of ZnO NPs ranged between 16 and 20 nm. A significant increase in growth parameters like shoot length (61.7%), root length (56.9%) and significantly higher level of protein was observed in the treated plants. The overall pattern for growth biomarkers including the protein contents was maximum at 8 mg/L of ZnO NPs. It was observed that application of biosynthesized ZnO NPs has improved majority of growth biomarkers including plant growth parameters, protein contents and leaf area. Therefore, biosynthesized ZnO NPs could be considered as an alternate source of nutrient in Zn deficient soils for promoting the modern agriculture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...